DATAMATH  CALCULATOR  MUSEUM

Jack S. Kilby

Dallas (June 20, 2005)  ĄJack S. Kilby, an Inventor of the Microchip, Is Dead at 81"

Jack St. Clair Kilby passed away June 20, 2005, in Dallas following a brief battle with cancer. 

A public memorial service for Jack will be held Monday, June 27, at 10 am on the SMU campus at the Caruth Auditorium in the Meadow School of the Arts, 6101 Bishop Boulevard, Dallas, Texas.

For those wishing to make a memorial contribution, the family has identified the following:

- The Jack Kilby Fund in Electrical and Computer Engineering, the University of Illinois 
  Foundation, Harker Hall, 1305 West Green, Urbana, Illinois 61801;

- The Great Bend Foundation (Jack Kilby Statue Fund), P.O. Drawer E, Great Bend, 
   Kansas 67530.

There are few living men whose insights and professional accomplishments have changed the world. Jack Kilby is one of these men. His invention of the monolithic integrated circuit - the microchip - some 30 years ago at Texas  Instruments (TI) laid the conceptual and technical foundation for the entire field of modern microelectronics. It was this breakthrough that made possible the sophisticated high-speed computers and large-capacity semiconductor memories of today's information age. 

Mr. Kilby grew up in Great Bend, Kansas. With B.S. and M.S. degrees in electrical engineering from the Universities of Illinois and Wisconsin respectively, he began his career in 1947 with the Centralab Division of Globe Union Inc. in Milwaukee, developing ceramic-base, silk-screen circuits for consumer electronic products. 

In 1958, he joined TI in Dallas. During the summer of that year working with borrowed and improvised equipment, he conceived and built the first electronic circuit in which all of the components, both active and passive, were fabricated in a single piece of semiconductor material half the size of a paper clip. The successful laboratory demonstration of that first simple microchip on September 12, 1958, made history. 

Jack Kilby went on to pioneer military, industrial, and commercial applications of microchip technology. He headed teams that built both the first military system and the first computer incorporating integrated circuits. He later co-invented both the hand-held calculator and the thermal printer that was used in portable data terminals. 

In 1970, he took a leave of absence from TI to work as an independent inventor exploring, among other subjects, the use of silicon technology for generating electrical power from sunlight. From 1978 to 1984, he held the position of Distinguished Professor of Electrical Engineering at Texas A&M University. At present, he maintains a schedule of work and travel on industry and government consulting assignments throughout the world. He also serves as director of several corporations. 

Jack Kilby is the recipient of three of the nation's most prestigious honors in science and engineering. In 1970, in a White House ceremony, he received the National Medal of Science. In 1982, he was inducted into the National Inventors Hall of Fame, taking his place alongside Henry Ford, Thomas Edison, and the Wright Brothers in the annals of American innovation. And finally
, in 2000 the Nobel Prize for Physics was awarded to industry pioneer Jack Kilby.

Mr. Kilby holds over 60 U.S. patents. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) and a member of the National Academy of Engineering (NAE). He has been awarded the Franklin Institute's Stuart Ballantine Medal, the NAE's Vladimir Zworykin Award, the American Society of Mechanical Engineers' Holley Medal, and the IEEE's Metal of Honor, Cledo Brunetti Award, and David Sarnoff Award. On the 30th anniversary of the invention of the integrated circuit, the Governor of Texas dedicated an official Texas historical marker near the site of the TI laboratory where Mr. Kilby did his work.


Jerry D. Merryman

Jerry D. Merryman joined TI in 1963 and remained with the company for 30 years. He was one of three team members responsible for the invention of the handheld electronic calculator, and served as project manager and logic designer for the two-year project.

In his career with TI, Merryman worked as an engineer in the design and development of a variety of products and technologies. In addition to his work on the handheld calculator, Merryman was instrumental in designing and fabricating semiconductor manufacturing equipment. He also made significant contributions to the thermal printing devices that TI used for years in a popular family of data terminal products.

Elected a TI Fellow in 1975, Merryman worked in the area of industrial automation, including the application of optics and electronics to a family of high-speed laser writers used in submicron optical lithography.

Merryman began his career at the Texas A&M Department of Oceanography and Meteorology measuring the force of hurricane winds and oceans on an oil platform in the Gulf of Mexico. It was while working at A&M that Merryman designed a mobile meteorological data-gathering station, which included building his first computer.

Merryman retired in 1993, but remains an active consultant. He holds approximately 60 U.S. and foreign patents, and he currently lives with his wife in Dallas, Texas.

 

James H. Van Tassel

James H. Van Tassel joined Texas Instruments in 1960, and remained with the company for nearly 20 years. He was one of three team members responsible for the invention of the handheld electronic calculator, and developed the compact keyboard and device packaging for the prototype. 

At TI, Dr. Van Tassel served as director of process control and quality laboratories at TIís semiconductor manufacturing operations from 1967 to 1972. Much of his early work at Texas Instruments involved the development of magnetic thin memory film. He became technical director of TI Europe in 1972 and was responsible for engineering management and development there. Dr. Van Tassel returned to the United States in 1975 and held several positions with Texas Instruments in Houston, including manager of the MOS Logic Business Unit. 

Following his time at Texas Instruments, Dr. Van Tassel joined NCR Corporation in 1980 and served as Vice President of the Microelectronics Division until 1991. While at NCR, Dr. Van Tassel was responsible for the development and manufacture of semiconductors.

Dr. Van Tassel holds a Bachelor of Science from the University of Wisconsin at LaCrosse, a Master of Chemistry and a Doctor of Philosophy in Chemistry from Texas Technological University. He also completed post-doctoral study in analytical instrumentation at Princeton University. He currently resides in Dayton, Ohio.

 

Patrick E. Haggerty

Pat Haggerty, business executive, son of Michael Eugene and Lillian (Evenson) Haggerty, was born at Harvey, North Dakota, on March 17, 1914. He married Beatrice E. Menne on February 26, 1938; they had five children. At an early age Haggerty built a prize-winning radio and became one of the first ham radio operators in North Dakota. He entered Marquette University in 1931 with a scholarship and worked part-time at the Badger Carton Company, Milwaukee. After graduating summa cum laude from the Marquette University School of Electrical Engineering in 1936, he became a full-time production manager at Badger. A year later he was given responsibility for all engineering, manufacturing, and administrative functions at Badger except sales. In World War II,qv Haggerty, an ensign in the United States Naval Reserve, served in the Bureau of Aeronautics, Department of the Navy, Washington, D.C. Initially, he evaluated the performance of manufacturers supplying electronic equipment to the United States Navy; he was later given responsibility for all procurement and production of naval airborne electronic equipment and progressed to the rank of lieutenant. 

During this period he met J. Erik Jonsson of Geophysical Service, Incorporated, now Texas Instruments, Incorporated.qv GSI, founded in 1930 as Geophysical Service, was the first independent contractor specializing in the reflection-seismograph method of geophysical exploration. It was found that similar techniques could be used to locate submerged submarines, and in 1942 the company began building electronic systems for military use. Jonsson and Haggerty talked of the need after the war for a good, small company to combine electrical and mechanical technology for innovative military and civilian products. Haggerty joined GSI in Dallas in November 1945 as general manager of the newly formed Laboratory and Manufacturing Division, with responsibility for developing the research, engineering, and manufacturing phases of the company's operations. Manufactured products gradually overtook services in sales volume, and in December 1951 GSI became Texas Instruments, Incorporated. Haggerty became executive vice president and director in 1951, president in 1958, and chairman in 1967, a post he held until retiring. For TI to be a significant electronics company, Haggerty believed that it was necessary to do more than assemble components. When Western Electric offered to sell licenses for the manufacture of transistors in 1951, Haggerty seized the opportunity to provide components that would replace bulky vacuum tubes, such as those used in radios. Within months TI had its first transistor, and by the latter part of 1953 the firm was mass-producing germanium transistors under the direction of Mark Shepherd, Jr. Initial prices were high, however, and Haggerty sought a high-volume manufacturing base to lower costs and produce ongoing demand. He decided that the portable-radio market would stimulate demand, and the pocket-sized Regency radio was introduced just in time for Christmas, 1954. Thus began a new era in electronics technology. That same year TI pioneered commercial production of transistors made from silicon, a material that could withstand high operating temperatures occurring in more complex, sophisticated systems such as computers. Haggerty believed that electronics could benefit all parts of society, and discussions led to the hiring of research engineers to explore the possibilities. One of these engineers, Jack Kilby, invented the integrated circuit in TI laboratories in 1958. 

Other major achievements of TI under Haggerty's leadership included the development of new military technologies in laser guidance, infrared night-vision equipment and airborne radars; the invention of the electronic hand-held calculator; the development of the thermal printhead, which made possible a family of data terminals with silent printers; the invention of the single-chip microprocessor, the "brain" of a wide range of electronic devices; the practical application of information theory to seismic data processing through development of digital techniques for recording and processing geophysical data; the evolution of a widely studied management system (Objectives, Strategies, and Tactics) for managing the process of technological innovation; and consistent improvements in productivity that permitted steady price reductions in the face of increasing inflation. 

Deeply concerned with the challenge to increase United States productivity, Haggerty made significant contributions to the literature on this issue. In 1974 he delivered a series of lectures on productivity to the Graduate School of Industrial Administration of Carnegie-Mellon University, and he addressed the American Productivity Center and various professional associations to recommend solutions to America's "productivity malaise."
Throughout his career he encompassed the full range of scientific and technical achievement. His work inspired many vital contributions to the electronics revolution. 

He was a Catholic. He died on October 1, 1980, in Dallas, and was buried in Calvary Hill Cemetery. 


Richard M. Perdue Copyright ©, The Texas State Historical Association, 1997-2001

If you have additions to the above article please email: joerg@datamath.org.

© Texas Instruments Incorporates.  Dallas